Cara Mengetahui Versi Tensorflow di Python

Berikut ini cara mengetahui versi Tensorflow yang terpasang di Python

import tflite_runtime
import sys
import cv2
import numpy
print("Python Version");
print(sys.version)
print("OpenCV Version");
print(cv2.__version__)
print("Numpy Version");
print(numpy.__version__)

print("tflite_runtime Version");
print(tflite_runtime.__version__)

Instalasi Ruby di Ubuntu

Berikut ini tahap instalasi Ruby di Ubuntu 20.04

#install library yang diperlukan
install zlib1g
apt install libffi-dev  # untuk 3.3.1
apt install libyaml-dev # untuk 3.3.1

#install rbenv
apt install rbenv

#update data versi ruby yang tersedia
git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build

#lihat versi ruby yang tersedia
rbenv install --list

#instalasi ruby versi 3.3.1
rbenv install 3.3.1

#pakai update-alternatives jika mau menggunakan beberapa versi Ruby
update-alternatives --install /usr/bin/ruby ruby  /root/.rbenv/versions/3.3.1/bin/ruby  3202 --slave /usr/bin/gem gem /root/.rbenv/versions/3.3.1/bin/gem

#aktifkan ruby 3.3.1
update-alternatives --set ruby /root/.rbenv/versions/3.3.1/bin/ruby  

Complete Set of Results from Paper Energy Efficiency Across Programming Languages (2017)

Original paper: “Energy efficiency across programming languages: how do energy, time, and memory relate?

Original link: https://sites.google.com/view/energy-efficiency-languages/results?authuser=0

A. Data Tables

binary-trees

fannkuch-redux

fasta

k-nucleotide

mandelbrot

n-body

pidigits

regex-redux

reverse-complement

spectral-norm

B. Normalized Global Results

D. Pareto Optimal Set

Memindahkan File Dengan Python

Memindahkan file di bahasa Python dapat dilakukan dengan fungsi os.rename() dan shutil.move()

Perbedaannya:

  • os.rename hanya dapat memindahkan file jika keduanya berada di filesystem yang sama
  • shutil.move dapat memindahkan file yang berbeda filesystem

Referensi

Webscraping Situs Pemilu 2024

Pilpres

Aktifkan dulu fitur web developer di browser Firefox, supaya dapat melihat daftar file yang diunduh untuk setiap laman.

Klik situs pemilu https://pemilu2024.kpu.go.id/

Daftar file JSON:

https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json : berisi daftar provinsi di Indonesia
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json: daftar capres

Klik di salah satu Provinsi, misal ACEH (https://pemilu2024.kpu.go.id/pilpres/hitung-suara/11)
daftar file JSON:
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json

Kemudian klik salah satu Kabupaten, misal ACEH BARAT https://pemilu2024.kpu.go.id/pilpres/hitung-suara/11/1105
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json

Kemudian klik salah satu kecamatan, misal ARONGAN LAMBALEK https://pemilu2024.kpu.go.id/pilpres/hitung-suara/11/1105/110507
Daftar file JSON yang diambil:
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507.json

Kemudian klik salah satu Kelurahan, misal ALUE BAGOK https://pemilu2024.kpu.go.id/pilpres/hitung-suara/11/1105/110507/1105072002
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507.json
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507/1105072002.json

Kemudian klik salah satu TPS, misal TPS 001 https://pemilu2024.kpu.go.id/pilpres/hitung-suara/11/1105/110507/1105072002/1105072002001
Daftar file JSON yang diambil:
https://sirekap-obj-data.kpu.go.id/pemilu/ppwp.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/pemilu/hhcw/ppwp/11/1105/110507/1105072002/1105072002001.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507/1105072002.json

Pileg DPR

Pileg DPRD Provinsi

// Pileg DPRD Provinsi
https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara
file JSON:
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json

Pilih wilayah, misal Aceh: https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara/wilayah/11

https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/pdprdp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/pemilu/partai.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/pdprdp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json

Pilih Kabupaten/Kota, misal ACEH BARAT https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara/wilayah/11/1105
File JSON:
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/0.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/pemilu/partai.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/pdprdp/11.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json

Pilih Kecamatan, misal ARONGAN LAMBALEK https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara/wilayah/11/1105/110507

https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507.json
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507.json

Pilih Kelurahan, misal ALUE BAGOK https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara/wilayah/11/1105/110507/1105072002
https://sirekap-obj-data.kpu.go.id/wilayah/pemilu/ppwp/11/1105/110507/1105072002.json

Pilih TPS, misal TPS001 https://pemilu2024.kpu.go.id/pilegdprd_prov/hitung-suara/wilayah/11/1105/110507/1105072002/1105072002001
https://sirekap-obj-data.kpu.go.id/pemilu/hhcw/pdprdp/11/1105/110507/1105072002/1105072002001.json

Pileg DPRD Kabupaten Kota

Pileg DPD

Daftar file JSON

https://pemilu2024.kpu.go.id/pemilu_dpd/hitung-suara/11
https://pemilu2024.kpu.go.id/pemilu_dpd/hitung-suara/11/1105
https://sirekap-obj-data.kpu.go.id/pemilu/hhcw/pdpd/11/1105/110507/1105072002/1105072002001.json

Upgrade Proxmox tanpa subscription untuk Proxmox 8

Cara update dan upgrade Proxmox walaupun tanpa enterprise subscription

Ubah file berikut:

  • /etc/apt/sources.list.d/pve-enterprise.list
  • /etc/apt/sources.list.d/ceph.list
/etc/apt/sources.list.d/pve-enterprise.list

From: deb https://enterprise.proxmox.com/debian/pve bookworm enterprise
To: deb http://download.proxmox.com/debian/pve bookworm pve-no-subscription
/etc/apt/sources.list.d/ceph.list
From: deb https://enterprise.proxmox.com/debian/ceph-quincy bookworm enterprise
To: deb http://download.proxmox.com/debian/ceph-quincy bookworm no-subscription

Referensi

Clustering Algorithms

A list of clustering algorithms

  • 1. K-Means Clustering: This is a centroid-based algorithm, where the goal is to minimize the sum of distances between points and their respective cluster centroid.
  • 2. Hierarchical Clustering: This method creates a tree of clusters. It is subdivided into Agglomerative (bottom-up approach) and Divisive (top-down approach).
  • 3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise): This algorithm defines clusters as areas of high density separated by areas of low density.
  • 4. Mean Shift Clustering: It is a centroid-based algorithm, which updates candidates for centroids to be the mean of points within a given region.
  • 5. Gaussian Mixture Models (GMM): This method uses a probabilistic model to represent the presence of subpopulations within an overall population without requiring to assign each data point to a cluster.
  • 6. Spectral Clustering: It uses the eigenvalues of a similarity matrix to reduce dimensionality before applying a clustering algorithm, typically K-means.
  • 7. OPTICS (Ordering Points To Identify the Clustering Structure): Similar to DBSCAN, but creates a reachability plot to determine clustering structure.
  • 8. Affinity Propagation: It sends messages between pairs of samples until a set of exemplars and corresponding clusters gradually emerges. 9. BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies): Designed for large datasets, it incrementally and dynamically clusters incoming multi-dimensional metric data points.
  • 10. CURE (Clustering Using Representatives): It identifies clusters by shrinking each cluster to a certain number of representative points rather than the centroid.

References

  • DBSCAN https://en.wikipedia.org/wiki/DBSCAN
  • HDBSCAN https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html

Dive into Deep Learning

Aston Zhang, Zachary Lipton, Mu Li and Alex Smola, 2022 (http://alex.smola.org/projects.html)

This book covers code, math, examples and explanations in one piece. Some of the highlights:

  • Downloadable Jupyter notebooks. In fact, the entire book consists of notebooks.
  • A freely available PDF version
  • A GitHub repository to allow for fast corrections of errata
  • A tight integration with discussion forums to allow for questions regarding the math and code on the site
  • Theoretical background suitable for engineers and undergraduate researchers
  • State of the art models (including ResNet, faster-RCNN, etc)
  • Well documented and structured code that is executed on real datasets, yet at the same time small enough to fit on a laptop.
  • A Chinese translation (in fact, the Chinese book will be released first)