Survei Motherboard AMD untuk 3 GPU

Proses komputasi deep learning dapat dipercepat dengan menggunakan beberapa GPU.

Berikut ini studi motherboard AMD yang mendukung 3 GPU PCIe

Daftar motherboard untuk 3 GPU dapat dicari dari situs PC Part Picker:
https://pcpartpicker.com/products/motherboard/#s=33&L=4&h=3,8&sort=price&c=145,138

Ada 2 chipset yang umum: B550 dan X570. B550 hanya punya sedikit PCI lines, sehingga X570 lebih menarik.

Berikut ini beberapa kandidat berbasis XZ570:


Gigabyte X570 UD https://www.gigabyte.com/Motherboard/X570-UD-rev-10#kf (harga Rp 2,8+ juta)
– 1 x PCI Express x16 slot, supporting PCIe 4.0 and running at x16
– 2 x PCI Express x16 slots, supporting PCIe 4.0 (Note 2)/3.0 and running at x4 (PCIEX4)

ASRock X570S PG Riptide https://www.asrock.com/mb/AMD/X570S%20PG%20Riptide/index.asp (harga Rp  3+ juta)
– 1 x PCI Express 4.0 x16 Slot (x16 (PCIE1))*
– 2 x PCI Express 4.0 x16 Slots (x4 (PCIE4) / x2 (PCIE6))

Gigabyte X570 AORUS PRO https://www.gigabyte.com/Motherboard/X570-AORUS-PRO-rev-10#kf (harga Rp  4,5 juta)
1 x PCI Express x16 slot, supporting PCIe 4.0 and running at x16 (PCIEX16)
1 x PCI Express x16 slot, supporting PCIe 4.0 and running at x8 (PCIEX8)
1 x PCI Express x16 slot, supporting PCIe 4.0/3.0 and running at x4 (PCIEX4)

 

Gigabyte X570 UD (Ultra Durable)
Gigabyte X570 UD (Ultra Durable)
Gigabyte X570 Aorus Pro
Gigabyte X570 Aorus Pro
ASRock X570S PG Riptide
ASRock X570S PG Riptide

 

 

Menambahkan Journal di EXT4 Filesystem

Filesystem EXT4 di Linux dapat mempunyai fasilitas journaling.

Pada filesystem EXT4 yang baru dikonversi dari EXT2, biasanya journaling ini belum ada.

Untuk menambahkan journal tersebut, dapat menggunakan perintah tune2fs sebagai berikut. Misal filesystem yang akan diubah adalah /dev/sdb1.

sudo tune2fs -O has_journal /dev/sdb1

Image Annotation Tools

Here is a list of image annotation tools. In my opinon, the best so far for bounding box id MakeSense.AI

Free tools

Paid tool

  • V7
  • RectLabel (https://rectlabel.com/) OSX only
  • MakeML (OSX only)
  • Labelbox (https://labelbox.com/)
  • BeaverDam video annotation tool (https://github.com/antingshen/BeaverDam)
  • Scale AI
  • SuperAnnotate
  • DataLoop
  • Playment (https://www.playment.io/)
  • Supervise.ly
  • Hive Data
  • Plainsight (https://plainsight.ai)

Reviews

Simulasi Pendaratan Starship dari SpaceX

Proses instalasi

conda install pip
pip install jupyter
pip install jupyterthemes
pip install matplotlib
pip install casidi

Referensi

IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation

Abstract

A benchmark provides an ecosystem to measure the advancement of models with standard datasets and automatic and human evaluation metrics. We introduce IndoNLG, the first such benchmark for the Indonesian language for natural language generation (NLG). It covers six tasks: summarization, question answering, open chitchat, as well as three different language-pairs of machine translation tasks. We provide a vast and clean pre-training corpus of Indonesian, Sundanese, and Javanese datasets called Indo4B-Plus, which is used to train our pre-trained NLG model, IndoBART. We evaluate the effectiveness and efficiency of IndoBART by conducting extensive evaluation on all IndoNLG tasks. Our findings show that IndoBART achieves competitive performance on Indonesian tasks with five times fewer parameters compared to the largest multilingual model in our benchmark, mBART-LARGE (Liu et al., 2020), and an almost 4x and 2.5x faster inference time on the CPU and GPU respectively. We additionally demonstrate the ability of IndoBART to learn Javanese and Sundanese, and it achieves decent performance on machine translation tasks.

Link: https://arxiv.org/abs/2104.08200