Covid-19 Detection with Chest Radiograph: Resources

Papers

Research Papers:

  • CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection – in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing an Auxiliary Classifier Generative Adversarial Network (ACGAN) based model called CovidGAN. In addition, we demonstrate that the synthetic images produced from CovidGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. By adding synthetic images produced by CovidGAN, the accuracy increased to 95%. We hope this method will speed up COVID-19 detection and lead to more robust systems of radiology.

  • Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-rays – The best performing models are iteratively pruned to reduce complexity and improve memory efficiency. The predictions of the best-performing pruned models are combined through different ensemble strategies to improve classification performance. Empirical evaluations demonstrate that the weighted average of the best-performing pruned models significantly improves performance resulting in an accuracy of 99.01% and area under the curve of 0.9972 in detecting COVID-19 findings on CXRs. The combined use of modality-specific knowledge transfer, iterative model pruning, and ensemble learning resulted in improved predictions. We expect that this model can be quickly adopted for COVID-19 screening using chest radiographs.

  • COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from Radiographs – Using these techniques, we showed the state of the art results on the open-access COVID-19 dataset. This work presents a 3-step technique to fine-tune a pre-trained ResNet-50 architecture to improve model performance and reduce training time. We call it COVIDResNet. This is achieved through progressively re-sizing of input images to 128x128x3, 224x224x3, and 229x229x3 pixels and fine-tuning the network at each stage. This approach along with the automatic learning rate selection enabled us to achieve the state of the art accuracy of 96.23% (on all the classes) on the COVIDx dataset with only 41 epochs. This work presented a computationally efficient and highly accurate model for multi-class classification of three different infection types from along with Normal individuals. This model can help in the early screening of COVID19 cases and help reduce the burden on healthcare systems.

More Papers (from https://www.kaggle.com/c/siim-covid19-detection/discussion/240838)

Source: https://pymed.ai/blog/researches-about-covid-19-chest-x-ray-classification-and-segmentation-with-deep-learning/

X-rays COVID-19 Localization

  1. COVID-19 detection from scarce chest x-ray image data using few-shot deep learning approach
  2. Identification of Images of COVID-19 from Chest X-rays Using Deep Learning: Comparing COGNEX VisionPro Deep Learning 1.0™ Software with Open Source Convolutional Neural Networks
  3. COVID-19 Image Data Collection
  4. CovidCTNet: an open-source deep learning approach to diagnose covid-19 using small cohort of CT images

Common Pitfalls (https://www.kaggle.com/c/siim-covid19-detection/discussion/240639)

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

The above is a link to a peer-reviwed paper recently published in the prestigious journal Nature Machine Intelligence. They examined 2,212 studies published in 2020, of which 415 were included after initial screening and, after quality screening, 62 studies were included in the systematic review.

Unfortunately they found that “…none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases.

Their main findings were:

  • Duplication and quality issues: Source issues, Frankenstein datasets, Implicit biases in the source data
  • Methodology issues: “…Diagnostic studies commonly compare their models’ performance to that of RT–PCR. However, as the ground-truth labels are often determined by RT–PCR, there is no way to measure whether a model outperforms RT–PCR from accuracy, sensitivity or specificity metrics alone. Ideally, models should aim to match clinicians using all available clinical and radiomic data…”

They then proceed to suggest a number of recommendations. The paper is well worth reading and is Open Access:

Top Solutions

This is an object detection and classification problem.

VinBigData Chest X-ray Abnormalities Detection

Components: Detection models (YOLO-V4 ), Specialized detector for aortic enlargement, Multi-label classifier-based post-processing. Image size 1280.

  • 4th place by @hiraiitsuki

    • model: yolov5x
    • image size: 640
    • TTA: 3 scale patterns and horizontal flip
    • ensemble: (4fold cv * 3 different preprocessed labels ) = 12 models

RSNA Pneumonia Detection Challenge

  • 1st place + code by @vaillant

    • classification-detection pipeline
    • detection: RetinaNet, Deformable R-FCN, Deformable Relation Networks.
    • classification: InceptionResNetV2 , Xception , DenseNet169.
    • Boxes were ensembled using: https://github.com/ahrnbom/ensemble-objdet
  • 2nd place by @dmytropoplavskiy

    • base model: custom RetinaNet (se-resnext101)
    • 512×512 resolution
    • augmentations: Mild rotations (up to 6 deg), shift, scale, shear and h_flip, for some images random level of blur and noise and gamma changes.
    • ensemble: NMS
  • 3rd place + code by @pmcheng

    • base models: RetinaNet (resnet-50 and resnet-101 ) + focal loss
    • 224 x 224 resolution as a abdominal radiologist he considered that high image resolution was not necessary for pneumonia bounding box prediction.
    • augmentations: rotation, translation, scaling, and horizontal flipping + random constants
    • NMS to eliminate any overlapping bounding boxes

SIIM-ACR Pneumothorax Segmentation

  • 1st place + code by @sneddy

    • base models: AlbuNet (resnet34) , Resnet50 , SCSEUnet (seresnext50)
    • Combo loss: combinations of BCE, dice and focal.
    • start with 512×512 and uptrain on size 1024×1024
    • small batch (2-4) size without accumulation
    • detailed tricks on his summary and github
  • 2nd place + code by @lanjunyelan

    • classification and segmentation pipeline.

    • Classification: classify whether an image in related with pneumothorax or not. Multi-task model based on UNET (seresnext 50, seresnext101, efficientnet-b3
      ) with a branch for classifying. BCE + focal loss. Basic augmentation: hflip, scale, rotate, bright, blur

    • Segmentation: 2 base models: unet and deeplabv3. Loss: dice loss. Augmentation: same as classification

  • 3rd place + code by @bestfitting

    • base model UNET (resnet34, se-resnext50)
    • cropped lungs, 576×576 cropped images (1024×1024 initially).
    • Attention: CBAM
    • Loss: Lovasz Los.
    • No classification model, No classification loss

RSNA STR Pulmonary Embolism Detection

Segmentation

  • Unveiling COVID-19 from Chest X-ray with deep learning: a hurdles race with small data Enzo Tartaglione, Carlo Alberto Barbano, Claudio Berzovini, Marco Calandri, Marco Grangetto
    https://arxiv.org/abs/2004.05405
  • A Critic Evaluation of Methods for COVID-19 Automatic Detection from X-Ray Images Gianluca Maguolo, Loris Nanni, https://arxiv.org/abs/2004.12823

Research Papers

  1. A Deep Neural Network to Distinguish COVID-19 from other Chest Diseases using X-ray Images ( https://www.mdpi.com/1424-8220/21/2/455/htm)
  2. COVID-CT-MD: COVID-19 Computed Tomography (CT) Scan Dataset Applicable in Machine Learning and Deep Learning (https://paperswithcode.com/paper/covid-ct-md-covid-19-computed-tomography-ct)
  3. CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection (https://ieeexplore.ieee.org/document/9093842)
  4. Synthesis of COVID-19 Chest X-rays using Unpaired Image-to-Image Translation 🙁https://paperswithcode.com/paper/synthesis-of-covid-19-chest-x-rays-using)

Plant Pathology 2021 – FGVC8 Competition: Resources

Official link: https://www.kaggle.com/c/plant-pathology-2021-fgvc8/overview

Dataset

Previous Competition

Related Competition

Papers on Plant Image Detection

SSD NVMe 1TB

Berikut ini perbandingan parameter-parameter penting SSD NVMe dengan kapasitas 1 TB, dengan interface M.2.

SSD WD Blue SN550 NVMe
SSD WD Blue SN550 NVMe

Tipe-tipe yang dipilih pada tabel berikut ini adalah yang tersedia di pasaran pada bulan April 2021.

Data terutama diperoleh dari situs resmi pabrikan masing-masing SSD. Beberapa produk tidak menyertakan TBW (Terabytes Written) di situsnya, sehingga data TBW perlu dicari dari situs review terkait.

Pabrikan Tipe Harga Read / Write
TBW Harga/TBW
Garansi
V-Gen SSD M.2 NVme 1TB – Hyper Series 2179000 3500 / 2500 640 [REF] 3404 3 tahun
Team TM8FPE001T0C611 2227000 2100 / 1700 600 [REF] 3711 3 tahun
Team TM8FP4001T0C101 2237000 3400 / 2900 1660 1347 3 tahun
Corsair MP600 Core  1 TB M.2 NVMe PCIe Gen. 4 x4 SSD 2789000 4700 / 1950 225 [REF] 12395 5 tahun
Corsair Force Series Gen.4 PCIe MP600 1TB NVMe M.2 SSD 4109000 4950 / 4250 1800 [REF] 2282  
Kingston A2000 M.2 PCIe NVMe  1TB 2128000 2200 / 2000 600 3546  
WDC Black SN850 SSD 1TB M.2 NVMe PCIe / SSD 1TB 4140000 7000 / 5300 600  [REF] 6900  
WDC Black SN750 NVMe SSD M.2 N SSD 1TB 3130000 3470 / 3000 600 [REF] 5216  
WDC Blue SN550 NVMe SSD 1TB M.2 PCIe 1893000 2400 /  1950 600 [REF] 3155  
ADATA SX6000 Lite 1TB 1694000 1800 / 1200 480 [REF] 3529 5 tahun
ADATA SX6000 PRo 1TB 1729000 2100 / 1500 480 [REF] 3602 5 tahun
Transcend  TS1TMTE112S NVMe PCIe Gen3 x4 M.2 1TB / SSD 1TB 2010000 1700/1400 400 5025 5 tahun
Transcend TS1TMTE110S NVMe PCIe Gen3 x4 M.2 1TB 2020000 1700 / 1400 400 5050 5 tahun

Vaksin Nusantara

Kumpulan referensi tentang Vaksin Nusantara

 

Referensi:

PBN: Private Blog Network atau Jaringan Blog Pribadi

PBN adalah singkatan dari Private Blog Network

Terjemahan bebas dari Private Blog Network adalah Jaringan Blog Pribadi

PBN adalah jaringan website yang digunakan untuk menambah tautan ke website utama.

Definisi PBN

Menurut PageOnePower:

A private blog network (PBN) is a network of websites that only exist to link to a central website in order to influence that website’s authority in search [LINK]

Manfaat PBN

Fungsi PBN adalah sebagai sumber backlink untuk website utama.

Manfaat PBN adalah menaikkan otoritas website utama.

Permasalahan PBN

PBN dianggap teknik curang oleh search engine seperti Google.

Referensi

  • Apa itu PBN. Fungsi dan manfaatnya untuk SEO https://www.garuda.website/blog/cara-membangun-backlink-pbn/
  • PBNs: Everything You’ve Ever Wanted to Know But Were Afraid to Ask https://www.searchenginejournal.com/private-blog-networks/377296/
  • Google Webmaster Guidelines https://developers.google.com/search/docs/advanced/guidelines/webmaster-guidelines
  • Private Blog Networks (PBN): The Myths and The Risks https://www.semrush.com/blog/private-blog-network/
  • PBN Backlinks: Are They Worth It? The Final Word https://monitorbacklinks.com/blog/seo/pbn-backlinks
  • Private Blog Networks: A Penalty Waiting to Happen or Your Next Best SEO Hack? https://neilpatel.com/blog/private-blog-networks/
  • What is a Private Blog Network (PBN) https://www.pageonepower.com/search-glossary/private-blog-network

 

 

 

Instalasi Driver AMD GPU di Ubuntu 20.04

Tahap instalasi driver untuk GPU AMD di Ubuntu 20.04

Proses ini diadaptasi dari manual instalasi di https://amdgpu-install.readthedocs.io/en/latest/

Install Ubuntu 20.04.2 (https://ubuntu.com/download/server).  Driver AMDGPU untuk Ubuntu saat ini hanya dapat diinstall maksimal di Ubuntu 20.04.2. Tidak dapat diinstall di Ubuntu 20.10

Setelah selesai instalasi Ubuntu, lakukan proses update:

apt update
apt upgrade

Kemudian download driver AMD dari laman support AMD: https://www.amd.com/en/support.

Akan ada proses mengisi data di menu untuk memilih driver yang sesuai dengan card GPU yang dipakai.

Pada percobaan saya ini, file driver yang didapat adalah amdgpu-pro-20.45-1188099-ubuntu-20.04.tar.xz

Setelah itu lakukan proses ekstraksi driver dengan perintah tar:

tar -Jxvf amdgpu-pro-20.45-1188099-ubuntu-20.04.tar.xz

Setelah itu masuk ke direktori hasil instalasi

cd amdgpu-pro-20.45-1188099-ubuntu-20.04

Kemudian jalankan script instalasi

./amdgpu-pro-install --headless --opencl=pal,legacy

Opsi lain dapat dipilih, namun option di atas sudah cukup bagi saya.

Update: versi driver saat ini sudah diperbarui, sehingga file driver terbaru untuk RX 580 adalah amdgpu-pro-21.10-1247438-ubuntu-20.04.tar.xz

Download file deb: (https://repo.radeon.com/amdgpu-install/21.50.2/ubuntu/focal/amdgpu-install_21.50.2.50002-1_all.deb)

Copy file *.deb tersebut ke Ubuntu (jika belum)

Install file *.deb tersebut dengan apt-get

apt-get install ./amdgpu-install_21.50.2.50002-1_all.deb

Tips dari askubuntu

dpkg --add-architecture i386 

Install modul yang diperlukan, misal opencl

amdgpu-install --usecase=opencl

Referensi

Perkembangan Efisiensi Panel Surya

Perkembangan Efisiensi Panel Surya (solar cell/photovoltaic)

Perkembangan efisiensi berbagai solar cell
Perkembangan efisiensi berbagai solar cell

 

Perkembangan efisiensi konversi solar sel
Perkembangan efisiensi konversi solar sel

Beberapa teknologi material solar cell:

  • c-Si: crystalline silicon
  • CdTe: Cadmium telluride
  • CIGS: copper indium gallium selenide solar cell
  • Perovskite solar cell

Solar cell dengan teknologi Si p-n junction cell memerlukan sekitar 50 tahun untuk mencapai efisiensi 26% dari efisiensi teoritis 29%. Produk komersial berbasis silikon memiliki efisiensi 20%

Sementara perovskite cell memerlukan waktu 10 tahun untuk mencapai efisiensi 23% dari efisiensi teoritis 38%. Produk solar cell komersial berbasis perovskite diprediksi akan memiliki efisiensi 30%.

Harga produk perovskite cell sekitar 50% harga silikon, sehingga perovskite solar cell ini kemungkinan akan menjadi disruptive technology dalam 5 tahun ke depan.

Referensi