Lyft Self Driving Dataset and Competition
Lytft just released Level 5 Dataset, and they plan to release the corresponding challenge. Stay tuned. Here is the dataset: https://level5.lyft.com/dataset/ . Its size is around 41 GB
Lytft just released Level 5 Dataset, and they plan to release the corresponding challenge. Stay tuned. Here is the dataset: https://level5.lyft.com/dataset/ . Its size is around 41 GB
Facebook has just introduced a great dataset and corresponding machine learning challenge at same time. The dataset is named LVIS (Large Vocabulary Instance Segmentation). This is a great visual instance dataset. The challenge: https://www.lvisdataset.org/challenge Today, rigorous evaluation of general purpose object detectors is mostly performed in the few category regime (e.g. 80) or when there … Lanjutkan membaca LVIS Challenge 2019
Scikit-learn has just introduced simple API for machine learning visualizations. Here are a few visualization samples:
Kumpulan artikel-artikel tentang “Making Indonesia 4.0”. Dokumen Resmi Making Indonesia 4.0 Making Indonesia 4.0 ( Dokumen Peluncuran Resmi ) (87 halaman) (https://www.scribd.com/document/397793605/Making-Indonesia-President-Sign-Document-Bahasa-Final) Making Indonesia 4.0 (Brief, 8 halaman) http://www.kemenperin.go.id/download/18384 Making Indonesia 4.0 (Presentasi Menteri 2018, 21 halaman) (http://kemenperin.go.id/download/18427) Making Indonesia 4.0 (Seminar Nasional Standardisasi Badan Standardisasi Nasional BSN) (http://bsn.go.id/uploads/download/making_indonesia_4.0_-_kementerian_perindustrian.pdf) Making Indonesia 4.0 (Seminar Ditjen ILMATE … Lanjutkan membaca Making Indonesia 4.0
Kaggle: https://www.kaggle.com/ Driven Data: https://www.drivendata.org/competitions/ Crowdanalytix: https://www.crowdanalytix.com/community Coda Lab : https://competitions.codalab.org/ DataScienceChallenge https://www.datasciencechallenge.org/ , but it has shown no activity for long time CrowdAI: https://www.crowdai.org/challenges Analytics Vidhya https://datahack.analyticsvidhya.com/ TopCoder: https://www.topcoder.com/challenges, mostly competitive programming challenges, but several data science challenges are available
List of object detection progress: R-CNN Overfeat Multibox SPP-Net MR-CNN DeepBox AttentionNet Fast R-CNN Deep[Proposal Faster R-CNN OHEM YOLO v1 G-CNN AZNet Inside-OutsideNet (ION) Hypernet CRAFT MultiPathNet (MPN) SSD GBDNet CPF MS-CNN R-FCN PVANET DeepID NoC DSSD TDM YOLO v2 Feature Pyramid (FPN) RON DCN DeNet CoupleNet RetinaNet DSOD Mask R-CNN SMN YOLO v3 SIN … Lanjutkan membaca Object Detection State of The Art Progress
Berikut ini siaran pers bersama, yang nampaknya pengumuman resmi paling lengkap sejauh ini tentang bencana tsunami di Selat Sunda. Siaran Pers Bersama dari lembaga-lembaga berikut: Badan Informasi Geospasial (BIG) (https://twitter.com/InfoGeospasial) Kementrian Koordinator Bidang Kemaritiman (https://twitter.com/kemaritiman) Badan Pengkajian & Penerapan Teknologi (BPPT) (https://twitter.com/BPPT_RI) BMKG (https://twitter.com/infoBMKG) Lembaga Ilmu Pengetahuan Indonesia (LIPI) (https://twitter.com/lipiindonesia) Badan Geologi Sumber data ini … Lanjutkan membaca Siaran Pers Bersama Terkait Bencana Selat Sunda
Data korban dan kerusakan ini diperoleh dari twitter pak Sutopo Purwo Nugroho (Humas BNPB) di alamat https://twitter.com/Sutopo_PN/status/1077092955389812736 Sejauh ini belum ada gambar resmi dari situs Balai Nasional Penanggulanan Bencana (BNPB)
Keras logo There are several kind of image classification: Binary classification Multiclass classification Multi label classification Image generation method for training image.ImageGenerator.flow_from_directory() image.ImageGenerator.flow() Various models for training (built on model) Xception VGG16 VGG19 Resnet50 InceptionV3 InceptionResNetV2 MobileNet DenseNet NASNet MobileNetV2 Keras built in models usually have pre-trained weight on Imagenet, which significantly speeds up training, … Lanjutkan membaca Simple Image Classification with Keras
This tutorial shows how to do multiclass image classification with Keras, using keras.preprocessing.image.flow_from_directory() to feed the image files for training and prediction. Plant Seedlings Classification dataset Prepare Directory Structure download dataset fromĀ https://www.kaggle.com/c/plant-seedlings-classification/data put original training files in <root>/data/train put original test files in <root>/data/test/0 . Caution: test files must be put into a … Lanjutkan membaca Simple Multiclass Image Classification with Keras