Instalasi Redmine 4.0.6 di Ubuntu 20.04.2

Berikut ini cara instalasi redmine versi 4.0.6 di Ubuntu 20.04.2. Redmine 4.0.6 adalah versi redmine yang dapat diinstall menggunakan tools apt dari Ubuntu. Pada saat tulisan ini dibuat, versi terbaru dari Redmine adalah 4.2.3

Instalasi Aplikasi Pendukung


apt-get install apache2 software-properties-common ruby-rmagick mysql-server mysql-client mysql-common ruby-dev build-essential libmysqlclient-dev libssl-dev gcc libmysqlclient-dev  libapache2-mod-passenger

apt-get install imagemagick libmagickcore-dev libmagickwand-dev
apt-get install libmagickcore-dev 

Instalasi Redmine dan update bundle dari Ruby

apt-get install redmine redmine-mysql
gem update
gem install bundler

cd /usr/share/redmine
bundle update

Konfigurasi Apache2

edit file /etc/apache2/mods-available/passenger.conf 

existing:

PassengerRoot /usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini PassengerDefaultRuby /usr/bin/ruby

ditambah “PassengerDefaultUser www-data” menjadi:

PassengerDefaultUser www-data
PassengerRoot /usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini PassengerDefaultRuby /usr/bin/ruby

tambahkan symlink:

ln -s /usr/share/redmine/public /var/www/html/redmine

edit file /etc/apache2/sites-available/000-default.conf , tambahkan sebagai berikut:

<Directory /var/www/html/redmine>
    RailsBaseURI /redmine
    PassengerResolveSymlinksInDocumentRoot on
</Directory>

Tambahkan file lock untuk Gemfile

touch /usr/share/redmine/Gemfile.lock
chown www-data:www-data /usr/share/redmine/Gemfile.lock

Restart Apache supaya konfigurasi dibaca ulang:

service apache2 restart

cek di browser:

ke alamat http://192.168.0.203/redmine

Restart Apache2

service apache2 restart

Browse ke alamat server anda, misal http://192.168.0.10/redmine

default username: admin, default password: admin
setelah login akan diminta untuk mengganti password

Jika muncul pesan kesalahan, coba jalankan instruksi berikut ini [ref: https://www.redmine.org/boards/2/topics/65152]

bundle clean --force
bundle update thor
bundle install
bundle update
service apache2 restart

Instalasi Moodle 3.6 pada Ubuntu 20.04.2

Pada saat tulisan ini dibuat, Moodle terbaru adalah versi 3.11. Namun demikian, Moodle versi 3.6 masih diperlukan jika kita melakukan upgrade dari Moodle versi sebelum 3.6. Ada sedikit kesulitan pada instalasi Moodle 3.6 karena Moodle 3.6 tidak dapat diinstall dengan PHP 7.3, padahal instalasi Ubuntu 20.04.2 secara default akan menginstall PHP versi 7.4. Untuk itu kita perlu mengubah sedikit prosedur instalasi, supaay versi PHP yang diinstall adalah versi 7.3, bukan 7.4

Tahap instalasi

Tahap pertama adalah update Ubuntu

apt update
apt upgrade

Setelah itu download dan buka source code Moodle 3.6

cd /var/www/html
tar -xzvf moodle-latest-36.tgz

pakai PHP 7.3

  • ref: https://docs.moodle.org/dev/Moodle_and_PHP
  • https://www.tecmint.com/install-different-php-versions-in-ubuntu/

add-apt-repository ppa:ondrej/php
apt update
apt upgrade

apt install apache2
apt install mysql-server
apt install php7.3
apt install php7.3-xml
apt install php7.3-curl
apt install php7.3-gd
apt install php7.3-zip
apt install php7.3-intl
apt install php7.3-mysqli
apt install php7.3-mbstring
apt install php7.3-xmlrpc
apt install php7.3-soap
apt install libapache2-mod-php7.3 php7.3-mysql

apt install apache2 mysql-server php7.3 php7.3-xml php7.3-curl php7.3-gd php7.3-zip php7.3-intl php7.3-mysqli php7.3-mbstring php7.3-xmlrpc php7.3-soap libapache2-mod-php7.3 php7.3-mysql

Restart apache2

service apache2 restart

Masuk ke console MySQL , kemudian buat user baru untuk Moodle:

CREATE USER 'moodle'@'localhost' IDENTIFIED BY 'moodlepassword';
GRANT ALL PRIVILEGES ON moodle . * TO 'moodle'@'localhost';
ALTER USER 'moodle'@'localhost' IDENTIFIED WITH mysql_native_password BY 'moodlepassword';

Setelah itu proses instalasi dapat dilanjutkan melalui web browser

browse ke http://192.168.0.120/moodle/
auto redirect ke http://192.168.0.120/moodle/install.php

Simulasi Pendaratan Starship dari SpaceX

Proses instalasi

conda install pip
pip install jupyter
pip install jupyterthemes
pip install matplotlib
pip install casidi

Referensi

IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation

Abstract

A benchmark provides an ecosystem to measure the advancement of models with standard datasets and automatic and human evaluation metrics. We introduce IndoNLG, the first such benchmark for the Indonesian language for natural language generation (NLG). It covers six tasks: summarization, question answering, open chitchat, as well as three different language-pairs of machine translation tasks. We provide a vast and clean pre-training corpus of Indonesian, Sundanese, and Javanese datasets called Indo4B-Plus, which is used to train our pre-trained NLG model, IndoBART. We evaluate the effectiveness and efficiency of IndoBART by conducting extensive evaluation on all IndoNLG tasks. Our findings show that IndoBART achieves competitive performance on Indonesian tasks with five times fewer parameters compared to the largest multilingual model in our benchmark, mBART-LARGE (Liu et al., 2020), and an almost 4x and 2.5x faster inference time on the CPU and GPU respectively. We additionally demonstrate the ability of IndoBART to learn Javanese and Sundanese, and it achieves decent performance on machine translation tasks.

Link: https://arxiv.org/abs/2104.08200

Instalasi Pytorch di Windows

Prosedur instalasi Pytorch di Windows:

  • Kunjungi situs Pytorch, klik di “Get Started”, atau langsung ke “https://pytorch.org/get-started/locally/
  • Pilih setting yang diinginkan. Misal pada kasus saya: PyTorch versi Stable 1.9.0, OS: Windows, Package:Conda, Language: Python, Compute Platform:CUDA 11.1
  • Perintah untuk instalasi akan diberikan di bagian bawah

Saya menggunakan conda, untuk itu di Windows mesti melakukan dulu instalasi Anaconda Individual Edition atau Miniconda

Referensi

  • Pytorch Getting Started https://pytorch.org/get-started/locally/
  • Anaconda https://www.anaconda.com/products/individual
  • Miniconda https://docs.conda.io/en/latest/miniconda.html

Free Ebook: Machine Learning – A First Course for Engineers and Scientists

An interesting free ebook

When we developed the course Statistical Machine Learning for engineering students at Uppsala University, we found no appropriate textbook, so we ended up writing our own. It will be published by Cambridge University Press in 2021.

Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and Thomas B. Schön

A draft of the book is available below. We will keep a PDF of the book freely available also after its publication.

Latest draft of the book (older versions >>)

Table of Contents

  1. Introduction
    • The machine learning problem
    • Machine learning concepts via examples
    • About this book
  2. Supervised machine learning: a first approach
    • Supervised machine learning
    • A distance-based method: k-NN
    • A rule-based method: Decision trees
  3. Basic parametric models for regression and classification
    • Linear regression
    • Classification and logistic regression
    • Polynomial regression and regularization
    • Generalized linear models
  4. Understanding, evaluating and improving the performance
    • Expected new data error: performance in production
    • Estimating the expected new data error
    • The training error–generalization gap decomposition
    • The bias-variance decomposition
    • Additional tools for evaluating binary classifiers
  5. Learning parametric models
    • Principles pf parametric modelling
    • Loss functions and likelihood-based models
    • Regularization
    • Parameter optimization
    • Optimization with large datasets
    • Hyperparameter optimization
  6. Neural networks and deep learning
    • The neural network model
    • Training a neural network
    • Convolutional neural networks
    • Dropout
  7. Ensemble methods: Bagging and boosting
    • Bagging
    • Random forests
    • Boosting and AdaBoost
    • Gradient boosting
  8. Nonlinear input transformations and kernels
    • Creating features by nonlinear input transformations
    • Kernel ridge regdression
    • Support vector regression
    • Kernel theory
    • Support vector classification
  9. The Bayesian approach and Gaussian processes
  10. Generative models and learning from unlabeled data
    • The Gaussian mixture model and discriminant analysis
    • Cluster analysis
    • Deep generative models
    • Representation learning and dimensionality reduction
  11. User aspects of machine learning
    • Defining the machine learning problem
    • Improving a machine learning model
    • What if we cannot collect more data?
    • Practical data issues
    • Can I trust my machine learning model?
  12. Ethics in machine learning (by David Sumpter)
    • Fairness and error functions
    • Misleading claims about performance
    • Limitations of training data