Image Captioning Models and Fabrik

No
Name
URL
Framework
Note
Fabrik
1 NeuralTalk https://github.com/karpathy/neuraltalk Python + numpy obsoleted by NeuralTalk2
2 NeuralTalk2 https://github.com/karpathy/neuraltalk2 Torch Torch incompatible with Fabriq
3 Show and Tell https://github.com/tensorflow/models/tree/master/research/im2txt Tensorflow Tensorflow parser Fabriq incompatible with Fabriq
4 Keras Image Caption https://github.com/LemonATsu/Keras-Image-Caption Keras
requires python 3.4+
fail with python 3.6
5 https://github.com/amaiasalvador/imcap_keras Keras need MSCOCO
6 Neural Image Captioning https://github.com/oarriaga/neural_image_captioning Keras TimeDistributed Layer incompatible with
I want to add an Image Captioning model to Fabrik. It seems pretty easy, all you have to do is find a JSON format of the model you want, and there you go! All done. But in reality, it wasn’t that easy.
First, I have to find an image captioning mode. My first choice landed to NeuralTalk since it’s pretty popular. After heading to the GitHub page, it seems like NeuralTalk is obsoleted by NeuralTalk2, so I take NeuralTalk2 After having a hard time trying to install it and trying to make the JSON file, I realized something. NeuralTalk2 use torch as its framework and Fabrik doesn’t support torch. Fabrik only supports Caffe, Keras, and Tensorflow. (I never made the JSON file by the way)
I have to try another model. I ended up trying Neural Image Captioning by oarriaga on github. Unlike NeuralTalk2, making the JSON file was pretty smooth.
So I try to find another model. Show and Tell looks good. It uses Tensorflow as its framework, but unfortunately Fabrik <><><>< so I have to find another model

Machine Learning And Artificial Intelligence Challenges in 2018

Host Challenge Name URL Prize Deadline
Visual Geometry Group Visual Domain Decathlon Challenge http://www.robots.ox.ac.uk/~vgg/decathlon/
Driven Data Concept to Clinic https://concepttoclinic.drivendata.org/ 100000 Early 2018
Driven Data Predicting Poverty https://www.drivendata.org/competitions/50/worldbank-poverty-prediction/ 15000 28 Februari 2018
Kaggle Mercari Price Suggestion Challenge https://www.kaggle.com/c/mercari-price-suggestion-challenge 100000
Kaggle Toxic Comment Classification Challenge https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge 35000 20 Februari 2018
Kaggle Nomad2018 Predicting Transparent Conductors https://www.kaggle.com/c/nomad2018-predict-transparent-conductors EUR 5000
Kaggle Statoil/C-CORE Iceberg Classifier Challenge https://www.kaggle.com/c/statoil-iceberg-classifier-challenge 50000 23 Januari 2018
Kaggle TensorFlow Speech Recognition Challenge https://www.kaggle.com/c/tensorflow-speech-recognition-challenge 25000 16 Januari 2018
Crowd AI WWW 2018 Challenge: Learning to Recognize Musical Genre https://www.crowdai.org/challenges/www-2018-challenge-learning-to-recognize-musical-genre
Crowd AI AI-generated music challenge https://www.crowdai.org/challenges/ai-generated-music-challenge
Crowdanalytix Business Analytics for Beginners Using R – Part I https://www.crowdanalytix.com/contests/business-analytics-for-beginners-using-r—part-i
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17036&pm=14735
Innocentive Machine Tagging Challenge https://www.innocentive.com/ar/challenge/9934063
Innocentive PET Imaging Probes for Visualization and Quantification of Oligonucleotide Exposure https://www.innocentive.com/ar/challenge/9934086
Topcoder Computer Vision – Duplicated Receipts Detector – Improvement of The Initial PoC https://www.topcoder.com/challenges/30061112/?type=develop
Topcoder Road Detector https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17036&pm=14735
https://community.topcoder.com/longcontest/?module=ViewStandings&rd=17036
Hackerrank Correlation and Regression Lines – A Quick Recap #1 https://www.hackerrank.com/challenges/correlation-and-regression-lines-6/problem
DataScience Power Consumption Forecasts https://www.datascience.net/fr/challenge/32/details
Analytics Vidhya Data Science Interview Preparation Test https://datahack.analyticsvidhya.com/contest/data-science-interview-preparation-test/
Quora Quora Challenges https://www.quora.com/challenges
Coda Lab LiTS – Liver Tumor Segmentation Challenge https://competitions.codalab.org/competitions/17094
Microsoft et al MS COCO http://cocodataset.org/
Kaggle & IEEE IEEE Signal Processing Cup https://signalprocessingsociety.org/get-involved/signal-processing-cup
Kaggle & Google Google Landmark Retrieval Challenge https://www.kaggle.com/c/landmark-retrieval-challenge
Kaggle & Google Google Landmark Recognition Challenge https://www.kaggle.com/c/landmark-recognition-challenge
Kaggle Humpback Whale Identification Challenge https://www.kaggle.com/c/whale-categorization-playground
Kaggle Digit Recognizer https://www.kaggle.com/c/digit-recognizer
Crowd AI AI-generated music challenge https://www.crowdai.org/challenges/ai-generated-music-challenge
Crowd AI Mapping Challenge https://www.crowdai.org/challenges/mapping-challenge
RTE Winter electricity demand forecast – a deterministic approach [Part 1] https://www.datascience.net/fr/challenge/33/details
RTE Winter electricity demand forecast – a probabilistic approach [Part 2] https://www.datascience.net/fr/challenge/34/details
Coda Lab Shallow Globe https://competitions.codalab.org/competitions/18113
Coda Lab AutoML2018 challenge PAKDD2018 https://competitions.codalab.org/competitions/17767
 Driven Data Power Laws: Forecasting Energy Consumption https://www.drivendata.org/competitions/51/electricity-prediction-machine-learning/
 Driven Data  Power Laws: Detecting Anomalies in Usage https://www.drivendata.org/competitions/52/anomaly-detection-electricity/
 Driven Data Power Laws: Optimizing Demand-side Strategies https://www.drivendata.org/competitions/53/optimize-photovoltaic-battery/
 Kaggle Dog Breed Identification https://www.kaggle.com/c/dog-breed-identification
Robust Vision Challlenge http://www.robustvision.net/
KITTI Vision Benchmark Suite http://www.cvlibs.net/datasets/kitti/
Clickbait Challenge http://www.clickbait-challenge.org/
Coda Lab Example-based Single-Image Super-Resolution Challenge https://competitions.codalab.org/competitions/18025
Hackerearth various challenges https://www.hackerearth.com/challenges/
Challenge Data https://challengedata.ens.fr/en/season/4/challenge_data_2018.html
Crowdanalytix Identifying Superheroes from Product Images https://www.crowdanalytix.com/contests/identifying-superheroes-from-product-images
Kaggle iMaterialist Challenge (Furniture) at FGVC5 https://www.kaggle.com/c/imaterialist-challenge-furniture-2018
Kaggle TalkingData AdTracking Fraud Detection Challenge https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection
Kaggle DonorsChoose.org Application Screening https://www.kaggle.com/c/donorschoose-application-screening
Kaggle Plant Seedlings Classification https://www.kaggle.com/c/plant-seedlings-classification
Kaggle iNaturalist Challenge at FGVC5 https://www.kaggle.com/c/inaturalist-2018
CrowdAI / EPFL AI-generated music challenge https://www.crowdai.org/challenges/ai-generated-music-challenge
CrowdAI Mapping Challenge https://www.crowdai.org/challenges/mapping-challenge
CrowdAI – CLEF LifeCLEF 2018 Expert https://www.crowdai.org/challenges/lifeclef-2018-expert
CrowdAI / CLEF LifeCLEF 2018 Geo – Location Based Species Recommendation https://www.crowdai.org/challenges/lifeclef-2018-geo
CrowdAI / CLEF ImageCLEF 2018 Tuberculosis – Severity scoring https://www.crowdai.org/challenges/imageclef-2018-tuberculosis-severity-scoring
a https://www.crowdai.org/challenges/imageclef-2018-tuberculosis-tbt-classification
a https://www.crowdai.org/challenges/imageclef-2018-caption-concept-detection
a https://www.crowdai.org/challenges/imageclef-2018-vqa-med
a https://www.crowdai.org/challenges/imageclef-2018-caption-caption-prediction
Alibaba Cloud & Met Office
Future Challenge
Helping Balloons Navigate the Weather
https://tianchi.aliyun.com/competition/introduction.htm?raceId=231622&_lang=en_US
ICPR2018 ICPR MTWI 2018 CHALLENGE 3: End to End Text Detection and Recognition of Web Images https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231652
ICPR2018 ICPR MTWI 2018 CHALLENGE 2: Text Detection of Web Images https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231651
ICPR2018 ICPR MTWI 2018 CHALLENGE 1: Text Recognition of Web Images https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231650
Alibaba FashionAI Global Challenge 2018—Attributes Recognition of Apparel https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231649
CAINIAO CAINIAO MSOM data-driven research competition https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231623
Tianchi Sina Weibo Interaction-prediction-Challenge the Baseline https://tianchi.aliyun.com/getStart/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231574
IJCAI-18 IJCAI-18 Alimama Sponsored Search Conversion Rate(CVR) Prediction Contest https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231647
Tian Chi FashionAI Global Challenge—Key Points Detection of Apparel https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231648
Tianchi Clothes Matching Challenge
 on Taobao.com-Challenge the Baseline https://tianchi.aliyun.com/getStart/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231575
DCASE Acoustic scene classification http://dcase.community/challenge2018/task-acoustic-scene-classification
DCASE General Purpose audio tagging of Freesound content with AudioSet labels http://dcase.community/challenge2018/task-general-purpose-audio-tagging   and https://www.kaggle.com/c/freesound-audio-tagging
DCASE Bird audio detection http://dcase.community/challenge2018/task-bird-audio-detection
DCASE Large-scale weakly labeled semi-supervised sound event detection in domestic environments http://dcase.community/challenge2018/task-large-scale-weakly-labeled-semi-supervised-sound-event-detection
DCASE Monitoring of domestic activities on multi-channel acoustics http://dcase.community/challenge2018/task-monitoring-domestic-activities
Agorize Smart City Innovation Award https://www.agorize.com/en/challenges/le-monde-smart-cities-2018-world
Open AI Open AI Retro Contest https://contest.openai.com/
IEEE Rebooting Computing Low-Power Image Recognition Challenge (LPIRC 2018) https://rebootingcomputing.ieee.org/lpirc
VIST-NAACL-2018 Visual Storytelling Challenge (NAACL 2018)  https://evalai.cloudcv.org/web/challenges/challenge-page/76/overview
Automatic Visual Advertisements VQA – CVPR2018 Automatic Understanding of Visual Advertisements https://evalai.cloudcv.org/web/challenges/challenge-page/86/overview
z VQA Challenge 2018 https://evalai.cloudcv.org/web/challenges/challenge-page/80/overview
z Leaf Segmentation Challenge https://competitions.codalab.org/competitions/18405
z DeepGlobe Land Cover Classification Challenge https://competitions.codalab.org/competitions/18468
z Chalearn LAP Inpainting Competition Track 2 – Video decaptioning https://competitions.codalab.org/competitions/18421
z Chalearn LAP Inpainting Competition Track 3 – Fingerprint Denoising and Inpainting https://competitions.codalab.org/competitions/18426
z Chalearn LAP Inpainting Competition Track 1 – Inpainting of still images https://competitions.codalab.org/competitions/18423
Kaggle / Google Open Images Challenge 2018 https://storage.googleapis.com/openimages/web/challenge.html
Principal Financial Group IEEE Investment Ranking Challenge https://www.crowdai.org/challenges/ieee-investment-ranking-challenge
z x t y
Stanford ML Group
Bone X-Ray Deep Learning Competition
https://stanfordmlgroup.github.io/competitions/mura/ t y
Berkeley
WAD 2018 Challenges
http://bdd-data.berkeley.edu/wad-2018.html t y
Hackerearth
Deep Learning Beginner Challenge
https://www.hackerearth.com/challenge/competitive/deep-learning-beginner-challenge/ y
x
x t y
x
x
z t y
x
x
z t y
Alibaba
Alibaba Global Scheduling Algorithm Competition
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5f1cd780HajDHE&raceId=231663 t y
IEEE ICDM 2018
IEEE ICDM 2018 Global A.I. Challenge on MeteorologyCatch Rain If You Can
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.47cbd780fgnIJX&raceId=231662 t y

 

Instalasi Eval AI di Ubuntu 17.10

Artikel ini adalah adaptasi dari prosedur instalasi di https://github.com/Cloud-CV/EvalAI

 

apt-get install openssh-server
apt-get install net-tools

Instalasi software dependencies:

apt-get install python2.7
apt-get install git
apt-get install postgresql

# Success. You can now start the database server using:
# /usr/lib/postgresql/9.6/bin/pg_ctl -D /var/lib/postgresql/9.6/main -l logfile start

apt-get install rabbitmq-server
apt-get install virtualenv
apt-get install python-psycopg2 (thanks to https://stackoverflow.com/questions/28253681/you-need-to-install-postgresql-server-dev-x-y-for-building-a-server-side-extensi)
apt-get install libpq-dev
apt-get install python-dev
apt-get install build-essential

# clone the EvalAI code

git clone https://github.com/Cloud-CV/EvalAI.git evalai

# Create a python virtual environment and install python dependencies.

cd evalai
virtualenv venv
source venv/bin/activate # run this command everytime before working on project
pip install -r requirements/dev.txt

Proses sampai tahap ini berhasil, selanjutnya masih perlu diujicoba:

cp settings/dev.sample.py settings/dev.py

Use your postgres username and password for fields USER and PASSWORD in dev.py file.

Create an empty postgres database and run database migration.

sudo -i -u (username)
createdb evalai
python manage.py migrate –settings=settings.dev

Seed the database with some fake data to work with.

python manage.py seed –settings=settings.dev

This command also creates a superuser(admin), a host user and a participant user with following credentials.

SUPERUSER- username: admin password: password
HOST USER- username: host password: password
PARTICIPANT USER- username: participant password: password

That’s it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)

python manage.py runserver –settings=settings.dev

Open a new terminal window with node(6.9.2) and ruby(gem) installed on your machine and type

npm install

Install bower(1.8.0) globally by running:

npm install -g bower

Now install the bower dependencies by running:

bower install

If you running npm install behind a proxy server, use

npm config set proxy http://proxy:port

Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)

gulp dev:runserver

That’s it, Open web browser and hit the url http://127.0.0.1:8888.

(Optional) If you want to see the whole game into play, then start the RabbitMQ worker in a new terminal window using the following command that consumes the submissions done for every challenge:

python scripts/workers/submission_worker.py

 

Percobaan iNaturalist

Menghitung Bandwidth Fair Use Policy Indihome 2016

Pada tulisan ini akan dihitung berapa bandwidth yang dapat dipakai untuk paket 10 Mbps Indihome jika diaktifkan terus menerus pada kondisi ideal.

PT Telkom Indonesia menerapkan kebijakan Fair Use Policy (FUP) pada Indihome berikut ini mulai Februari 2016.

Fair Use Policy Indihome 2016
Tabel Fair Use Policy Indihome 2016

Asumsi:

  • Paket 10 Mbps
  • 1 bulan adalah 30 hari
  • Koneksi aktif download setiap saat hanya dibatasi kecepatan Indihome
  • B = byte, b = bit, 1 byte = 8 bit

Perhitungan:

Paket ini akan mengalami 3 macam kecepatan:

  • 10 Mbps ketika pemakaian <300 GB
  • 75% x 10 Mbps = 7.5 Mbps ketika pemakaian < 400 GB
  • 40% x 10 Mbps = 4. Mbps ketika pemakaian > 400 GB

Durasi kecepatan 10 Mbps adalah:

300 GB / 10 Mbps = 300 GB / 10 Mbps x 8 b/B = 240000 detik

Durasi kecepatan 7.5 Mbps adalah:

100 GB / 7.5 MBps = 100 GB / 7.5 Mbps x 8 b/B = 106666 detik

Durasi kecepatan  4 Mbps adalah:

30 hari – 240000 detik – 106666 detik = 30x24x60x60 – 240000 – 106666  = 2245333 detik

Berikut ini ringkasannya:

Kecepatan Durasi Total byte
segmen 1 10 Mbps 240000 detik 300 GB
segmen 2 7.5 Mbps 106666 detik 100 GB
segmen 3 4 Mbps 2245333 detik 1122,7 GB
Total 2592000 detik 1522.7 GB

Jadi total download selama 30 hari adalah 1522.7 GB , dengan kecepatan rata-rata adalah 433127 byte /s atau sekitar 3.46 Mbps

Referensi

Pesawat Sebagai Rumpon

Rumpon di laut berfungsi untuk tempat bersarang hewan laut. Beberapa barang yang dipakai sebagai rumpon: kereta, kapal induk. Jarang-jarang ada pesawat terbang dijadikan sebagai rumpon.

Pesawat TU-154 LZ BTJ

BTJ adalah singkatan dari Balkan Todor Jivkov.

Todor Jivkov adalah perdana menteri Bulgaria dari 1954 sampai 1989

Lokasi : Black Sea waters near the city of Varna, some 450 km (280 miles) northeast of Sofia May 25, 2011.

Todor Zhivkov
Todor Zhivkov
TU154 LZ BTJ ketika masih operasional
TU154 LZ BTJ ketika masih operasional

 

TU154 sedang diangkut
TU154 sedang diangkut
The jetliner of former Bulgarian dictator Todor Zhivkov is prepared to be submerged and turned into an underwater tourist attraction off the country's Black Sea coast in Varna on May 25, 2011. The body of the Tupolev 154 will become an artificial reef aimed at attracting scuba divers. The plane, built in 1971, was stripped of its cables and engines before being sunk at a depth of about 70 feet.
The jetliner of former Bulgarian dictator Todor Zhivkov is prepared to be submerged and turned into an underwater tourist attraction off the country’s Black Sea coast in Varna on May 25, 2011. The body of the Tupolev 154 will become an artificial reef aimed at attracting scuba divers. The plane, built in 1971, was stripped of its cables and engines before being sunk at a depth of about 70 feet.
TU154 sedang diturunkan ke laut
TU154 sedang diturunkan ke laut
TU154 sedang ditenggelamkan
TU154 sedang ditenggelamkan

 

TU154 LZ BTJ sedang ditenggelamkan
TU154 LZ BTJ sedang ditenggelamkan
TU154 LZ BTJ sedang ditenggelamkan
TU154 LZ BTJ sedang ditenggelamkan
TU154 sedang ditenggelamkan
TU154 sedang ditenggelamkan

Pesawat itu sekarang menjadi obyek penyelaman yang menarik, seperti diuraikan di http://vodasport.com/?page_id=58

Referensi:

Memotret Dengan Mikroskop

Memotret dengan mikroskop dapat dilakukan dengan menggunakan kamera DSLR dengan cara mengganti lensa standar dengan lensa mikroskop. Untuk melakukan hal tersebut diperlukan adaptor khusus dari DSLR ke mikroskop. Adaptor ini berfungsi mencocokkan antara dudukan di kamera DSLR dengan sambungan di mikroskop. Kamera yang saya pakai adalah dari Canon, sedangkan dudukan mikroskop adalah berukuran 23 mm. Dengan informasi ini, barang tersebut dapat dicari di toko-toko online seperti Aliexpress.

Berikut ini gambar-gambar produk yang saya dapatkan di toko online:

 

T2 Mount untuk Canon

T2 Mount

T2 Mount untuk kamera Canon

T2 Mount dengan ukuran
T2 Mount dengan ukuran sambungan

Ukuran yang tertera tersebut dicocokkan dengan mikroskop yang saya punya (Mikroskop Siswa BMK 20) menggunakan jangka sorong. Hasilnya cocok, sehingga diputuskan untuk membelinya. Harga barang termasuk ongkos kirim sekitar Rp 200 ribu.

Berikut ini foto perbandingan antara T2 mount adaptor dan lensa okuler. T2 mount ini menggantikan lensa okuler kalau dipasang kamera.

Lensa okuler dan adaptor T2
Lensa okuler dan adaptor T2

Berikut ini foto-foto set up sistem kamera Canon D700 + T2 mount adaptor + mikroskop BMK 20:

Mikroskop dengan kamera
Mikroskop dengan kamera

Ongkos total: mikroskop < Rp 2 juta (tergantung merek dan toko), adaptor sekitar Rp 200 ribu, kamera DSLR sekitar Rp 6 juta. Pada kasus saya kamera DSLR sudah ada karena memang hobi memotret, jadi cukup keluar tambahan mikroskop + adaptor.

Pada mikroskop tersebut tidak ada sekrup untuk mengencangkan lensa okuler, sehingga kamera tersebut mudah berputar dengan adaptor sebagai porosnya. Hal ini tidak terlalu masalah asal hati-hati saja tidak menyenggol kamera ketika sedang memotret.

Untuk memotret benda kecil juga dapat dilakukan dengan cara lain, misalnya:

  • Mikroskop khusus multimedia
  • Mikroskop USB
  • Foldscope (http://www.foldscope.com/) ; mikroskop dari origami, sangat menarik sayangnya belum dijual.

Saya belum pernah mencoba 3 cara tersebut, jadi tidak dapat berkomentar tentang cara-cara itu.

Berikut ini contoh foto Paramecium yang diambil dengan kamera & mikroskop tersebut:

Paramecium
Paramecium

Save

Mikroslaid Preparat Biologi


Kode Nama Barang Nama Tertulis
BIA 210 Mikroslaid Cacing Lumbricus, Usus, p.l. No ZAN-650.1 Lumbricus t.s. thru. Body showing typhosole
BIA 215 Mikroslaid Cacing Lumbricus, Kerongkongan, p.l. ZAN-550.1 Lumbrcus t.s. of esophagus, just posterior to pharynx
BIA 301 Mikroslaid Daphnia, utuh 1. Daphnia
BIA 451 Mikroslaid Epitel Bersisik Sederhana HET-110.1 SQUAMOUS EPTHELIUM scrapings from human mouth
BIA 452 Mikroslaid Epitel Batang Sederhana HET-150.1 SIMPLE COLUMNAR EPITHELIUM
BIA 458 Mikroslaid Sperma, Mammalia, utuh 3. Sperm mamalia
BIA 459 Mikroslaid Trachea 4. Trachea
BIM 118 Mikroslaid Trypanosoma, utuh 2. Trypanosoma
BIM 610 Mikroslaid Penicillium sp., utuh Pencillium
BIM 620 Mikroslaid Aspergillus sp., utuh Aspergillus sp., utuh
BIM 810 Mikroslaid Paramecium sp., utuh Paramecium sp. , utuh
BIM 910 Mikroslaid Spirogyra sp., utuh Spyrogyra sp, w.m
BIM 912 Mikroslaid Diatom, utuh Diatoms, strewn slide of mixed species
BIP 102 Mikroslaid Bryophyta, utuh 9 Bryophita
BIP 152 Mikroslaid Stomata Jagung Stomata Jagung
BIP 157 Mikroslaid Stomata Canna Stomata Canna
BMS 23/001 Mikroslaid Darah Manusia Human Blood
BMS 23/002 Mikroslaid Tulang Rawan Hyaline Cartilage
BMS 23/004 Mikroslaid Batang Dikotil, p.l. Dicot stem, ts
BMS 23/005 Mikroslaid Batang Monokotil, p.l. Zea Mays Stem, ts
BMS 23/006 Mikroslaid Akar Dikotil, p.l. Dicot root, ts
BMS 23/007 Mikroslaid Akar Monokotil, p.l. Zea Mays Root, ts
BMS 23/009 Mikroslaid Pinus mercusii, Gymnospermae, Daun, p.l. Pinus leaf x.s
BMS 23/010 Mikroslaid Helianthus, Batang Dikotil Tua, p.l. Helianthus old stem t.s
BMS 23/011 Mikroslaid Zea mays, Akar Monokotil, p.b. Zea root, l.s.
BMS 23/012 Mikroslaid Akar Monokotil, p.b. Monocot Root, l.s.
BMS 23/013 Mikroslaid Sel Darah Putih Manusia Leukocyte, Human
BMS 23/014 Mikroslaid Epidermis Bawang, Monokotil Microslide of Onion Epidermic
BMS 23/015 Mikroslaid Batang Dikotil, Kacang Tanah, p.l. Dicot Stem, Peanut, Arachnis sp., c.s.
BMS 24/01 Mikroslaid Kaki Belakang Lebah Madu Honeybee posterior leg
BMS 24/02 Mikroslaid Antena Udang Antena crayfish
BMS 24/03 Mikroslaid Sayap Capung dragonfly wing
BMS 24/05 Mikroslaid Bulu Domba sheep hair
BMS 24/06 Mikroslaid Bulu Kelinci rabbit hair w.m.
BMS 24/07 Mikroslaid Bulu Burung bird feathre
BMS 24/08 Mikroslaid Sayap Kupu-kupu Butterfly wing
BMS 24/09 Mikroslaid Sayap Lebah Buah Drosophila anterior and posterior wings w.m
BMS 33.00/01 Mikroslaid Kotak Spora, Pteridophyta Microslide Sporangium Pteridophyta
BMS 33.00/02 Mikroslaid Jamur Mucor, utuh Mucor, Fungi, w.m.
BMS 33.00/04 Mikroslaid Hydra, utuh Microslide Hydra w.m.
BMS 46 Mikroslaid Euglena Euglena
BMS 48 Mikroslaid Chlorella Chlorella sp. W.m
BMS 38.00/01 Mikroslaid Pheretima, Cacing Tanah, p.l. Pheretima earthworm, ts
BMS 38.00/02 Mikroslaid Pheretima, Cacing Tanah, p.b. Pheretima earthworm, ls
BMS 38.00/03 Mikroslaid Cucurbita, Batang Dikotil, p.l. 3. cucurbita, dicot stem ts
BMS 38.00/04 Mikroslaid Cucurbita, Akar Dikotil, p.l. 4. Cucurbita, dicot root, ts
BMS 38.00/05 Mikroslaid Helianthus, Akar Muda, p.l. 5. Helianthus, dicot young root, ts
BMS 38.00/06 Mikroslaid Helianthus, Akar Dikotil Tua, p.l. 6. Helianthus, dicot old root, ts
BMS 38.00/07 Mikroslaid Allium, Ujung Akar Monokotil, p.b. 7. Allium, monocot root tip, ls
BMS 38.00/08 Mikroslaid Zea mays, Akar Monokotil, p.l. 8. zea mays, monocot root, ts
BMS 38.00/09 Mikroslaid Zea mays, Batang Monokotil, p.l. 9 Zea mays, monocot stem, ts
BMS 38.00/10 Mikroslaid Zea mays, Daun Monokotil, p.l. 10. Zea mays, monocot leaf, ts
BMS 38.00/11 Mikroslaid Ficus, Daun Dikotil, p.l. 11. Ficus dicot leaf, ts
BMS 38.00/12 Mikroslaid Lilium, Daun Monokotil, p.l. 12. Lilium monocot leaf ts
BMS 32.00/01 Mikroslaid Lilium, Kepala Sari (Profase Awal, p.l.) 1. Lilium, Anther (early prophase ts)
BMS 32.00/02 Mikroslaid Lilium, Kepala Sari (Profase Akhir, p.l.) Lilium, anther (late prophase ts)
BMS 32.00/03 Mikroslaid Lilium, Kepala Sari (Metafase, p.l.) Lilium, anther (metahphase ts)
BMS 32.00/04 Mikroslaid Lilium, Kepala Sari (Profase Akhir, p.l.) Lilium, anther (late prophase ts, showing pollen)

 

Magnetic Door Stopper Imperial

Door stopper bermagnet berguna untuk menjaga sebuah pintu berada dalam keadaan terbuka sehingga tidak menutup lagi karena angin. Beberapa waktu lalu door stopper untuk pintu luar rumah rusak karena terbuat dari plastik yang ternyata rusak setelah terpapar cahaya matahari bertahun-tahun. Solusinya adalah membeli door stopper baru yang terbuat dari logam. Pencarian di toko Borma Setiabudi tidak membawa hasil, ke ACE Hardware harganya mahal sekali, sedangkan mau ke toko besi rada malas, sehingga solusinya adalah mencari benda itu di toko online.

Akhirnya ketemu juga benda yang diinginkan dengan harga yang masih lumayan murah. Berikut ini foto-foto door stopper yang diperoleh, yaitu merek Imperial.

Kemasan

Kemasan door stopper
Kemasan door stopper

Isi Paket

Isi paket door stopper
Isi paket door stopper

Membongkar Komponen

Untuk membongkar bagian yang kecil mesti menggunakan tang lancip untuk memutar bagian belakangnya.

Komponen magnetic door stopper imperial
Membongkar bagian kecil

Berikut ini komponen-komponen dari bagian yang kecil. Ada sebuah magnet yang kecil sekali namun cukup kuat.

Komponen magnetic door stopper imperial
Komponen magnetic door stopper imperial

Berikut ini membongkar bagian yang besarnya, relatif lebih mudah karena hanya cukup dengan membuka 1 sekrup saja.

Komponen magnetic door stopper imperial
Komponen magnetic door stopper imperial

 

Manual

Manual yang disertakan pada kemasan cukup singkat, bisa dibilang basa-basi. Bahasa yang digunakan Inggris, dengan beberapa kesalahan.

Manual door stopper
Manual door stopper
Diagram skematik door stopper
Diagram skematik door stopper