No
|
Name
|
URL
|
Framework
|
Note
|
Fabrik
|
---|---|---|---|---|---|
1 | NeuralTalk | https://github.com/karpathy/neuraltalk | Python + numpy | obsoleted by NeuralTalk2 | |
2 | NeuralTalk2 | https://github.com/karpathy/neuraltalk2 | Torch | Torch incompatible with Fabriq | |
3 | Show and Tell | https://github.com/tensorflow/models/tree/master/research/im2txt | Tensorflow | Tensorflow parser Fabriq incompatible with Fabriq | |
4 | Keras Image Caption | https://github.com/LemonATsu/Keras-Image-Caption | Keras |
requires python 3.4+
fail with python 3.6
|
|
5 | https://github.com/amaiasalvador/imcap_keras | Keras | need MSCOCO | ||
6 | Neural Image Captioning | https://github.com/oarriaga/neural_image_captioning | Keras | TimeDistributed Layer incompatible with | |
Machine Learning And Artificial Intelligence Challenges in 2018
Host | Challenge Name | URL | Prize | Deadline |
Visual Geometry Group | Visual Domain Decathlon Challenge | http://www.robots.ox.ac.uk/~vgg/decathlon/ | ||
Driven Data | Concept to Clinic | https://concepttoclinic.drivendata.org/ | 100000 | Early 2018 |
Driven Data | Predicting Poverty | https://www.drivendata.org/competitions/50/worldbank-poverty-prediction/ | 15000 | 28 Februari 2018 |
Kaggle | Mercari Price Suggestion Challenge | https://www.kaggle.com/c/mercari-price-suggestion-challenge | 100000 | |
Kaggle | Toxic Comment Classification Challenge | https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge | 35000 | 20 Februari 2018 |
Kaggle | Nomad2018 Predicting Transparent Conductors | https://www.kaggle.com/c/nomad2018-predict-transparent-conductors | EUR 5000 | |
Kaggle | Statoil/C-CORE Iceberg Classifier Challenge | https://www.kaggle.com/c/statoil-iceberg-classifier-challenge | 50000 | 23 Januari 2018 |
Kaggle | TensorFlow Speech Recognition Challenge | https://www.kaggle.com/c/tensorflow-speech-recognition-challenge | 25000 | 16 Januari 2018 |
Crowd AI | WWW 2018 Challenge: Learning to Recognize Musical Genre | https://www.crowdai.org/challenges/www-2018-challenge-learning-to-recognize-musical-genre | ||
Crowd AI | AI-generated music challenge | https://www.crowdai.org/challenges/ai-generated-music-challenge | ||
Crowdanalytix | Business Analytics for Beginners Using R – Part I | https://www.crowdanalytix.com/contests/business-analytics-for-beginners-using-r—part-i | ||
https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17036&pm=14735 | ||||
Innocentive | Machine Tagging Challenge | https://www.innocentive.com/ar/challenge/9934063 | ||
Innocentive | PET Imaging Probes for Visualization and Quantification of Oligonucleotide Exposure | https://www.innocentive.com/ar/challenge/9934086 | ||
Topcoder | Computer Vision – Duplicated Receipts Detector – Improvement of The Initial PoC | https://www.topcoder.com/challenges/30061112/?type=develop | ||
Topcoder | Road Detector | https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=17036&pm=14735 | ||
https://community.topcoder.com/longcontest/?module=ViewStandings&rd=17036 | ||||
Hackerrank | Correlation and Regression Lines – A Quick Recap #1 | https://www.hackerrank.com/challenges/correlation-and-regression-lines-6/problem | ||
DataScience | Power Consumption Forecasts | https://www.datascience.net/fr/challenge/32/details | ||
Analytics Vidhya | Data Science Interview Preparation Test | https://datahack.analyticsvidhya.com/contest/data-science-interview-preparation-test/ | ||
Quora | Quora Challenges | https://www.quora.com/challenges | ||
Coda Lab | LiTS – Liver Tumor Segmentation Challenge | https://competitions.codalab.org/competitions/17094 | ||
Microsoft et al | MS COCO | http://cocodataset.org/ | ||
Kaggle & IEEE | IEEE Signal Processing Cup | https://signalprocessingsociety.org/get-involved/signal-processing-cup | ||
Kaggle & Google | Google Landmark Retrieval Challenge | https://www.kaggle.com/c/landmark-retrieval-challenge | ||
Kaggle & Google | Google Landmark Recognition Challenge | https://www.kaggle.com/c/landmark-recognition-challenge | ||
Kaggle | Humpback Whale Identification Challenge | https://www.kaggle.com/c/whale-categorization-playground | ||
Kaggle | Digit Recognizer | https://www.kaggle.com/c/digit-recognizer | ||
Crowd AI | AI-generated music challenge | https://www.crowdai.org/challenges/ai-generated-music-challenge | ||
Crowd AI | Mapping Challenge | https://www.crowdai.org/challenges/mapping-challenge | ||
RTE | Winter electricity demand forecast – a deterministic approach [Part 1] | https://www.datascience.net/fr/challenge/33/details | ||
RTE | Winter electricity demand forecast – a probabilistic approach [Part 2] | https://www.datascience.net/fr/challenge/34/details | ||
Coda Lab | Shallow Globe | https://competitions.codalab.org/competitions/18113 | ||
Coda Lab | AutoML2018 challenge PAKDD2018 | https://competitions.codalab.org/competitions/17767 | ||
Driven Data | Power Laws: Forecasting Energy Consumption | https://www.drivendata.org/competitions/51/electricity-prediction-machine-learning/ | ||
Driven Data | Power Laws: Detecting Anomalies in Usage | https://www.drivendata.org/competitions/52/anomaly-detection-electricity/ | ||
Driven Data | Power Laws: Optimizing Demand-side Strategies | https://www.drivendata.org/competitions/53/optimize-photovoltaic-battery/ | ||
Kaggle | Dog Breed Identification | https://www.kaggle.com/c/dog-breed-identification | ||
Robust Vision Challlenge | http://www.robustvision.net/ | |||
KITTI Vision Benchmark Suite | http://www.cvlibs.net/datasets/kitti/ | |||
Clickbait Challenge | http://www.clickbait-challenge.org/ | |||
Coda Lab | Example-based Single-Image Super-Resolution Challenge | https://competitions.codalab.org/competitions/18025 | ||
Hackerearth | various challenges | https://www.hackerearth.com/challenges/ | ||
Challenge Data | https://challengedata.ens.fr/en/season/4/challenge_data_2018.html | |||
Crowdanalytix | Identifying Superheroes from Product Images | https://www.crowdanalytix.com/contests/identifying-superheroes-from-product-images | ||
Kaggle | iMaterialist Challenge (Furniture) at FGVC5 | https://www.kaggle.com/c/imaterialist-challenge-furniture-2018 | ||
Kaggle | TalkingData AdTracking Fraud Detection Challenge | https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection | ||
Kaggle | DonorsChoose.org Application Screening | https://www.kaggle.com/c/donorschoose-application-screening | ||
Kaggle | Plant Seedlings Classification | https://www.kaggle.com/c/plant-seedlings-classification | ||
Kaggle | iNaturalist Challenge at FGVC5 | https://www.kaggle.com/c/inaturalist-2018 | ||
CrowdAI / EPFL | AI-generated music challenge | https://www.crowdai.org/challenges/ai-generated-music-challenge | ||
CrowdAI | Mapping Challenge | https://www.crowdai.org/challenges/mapping-challenge | ||
CrowdAI – CLEF | LifeCLEF 2018 Expert | https://www.crowdai.org/challenges/lifeclef-2018-expert | ||
CrowdAI / CLEF | LifeCLEF 2018 Geo – Location Based Species Recommendation | https://www.crowdai.org/challenges/lifeclef-2018-geo | ||
CrowdAI / CLEF | ImageCLEF 2018 Tuberculosis – Severity scoring | https://www.crowdai.org/challenges/imageclef-2018-tuberculosis-severity-scoring | ||
a | https://www.crowdai.org/challenges/imageclef-2018-tuberculosis-tbt-classification | |||
a | https://www.crowdai.org/challenges/imageclef-2018-caption-concept-detection | |||
a | https://www.crowdai.org/challenges/imageclef-2018-vqa-med | |||
a | https://www.crowdai.org/challenges/imageclef-2018-caption-caption-prediction | |||
Alibaba Cloud & Met Office |
Future Challenge
Helping Balloons Navigate the Weather
|
https://tianchi.aliyun.com/competition/introduction.htm?raceId=231622&_lang=en_US | ||
ICPR2018 | ICPR MTWI 2018 CHALLENGE 3: End to End Text Detection and Recognition of Web Images | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231652 | ||
ICPR2018 | ICPR MTWI 2018 CHALLENGE 2: Text Detection of Web Images | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231651 | ||
ICPR2018 | ICPR MTWI 2018 CHALLENGE 1: Text Recognition of Web Images | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231650 | ||
Alibaba | FashionAI Global Challenge 2018—Attributes Recognition of Apparel | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231649 | ||
CAINIAO | CAINIAO MSOM data-driven research competition | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5624d780ALjPWJ&raceId=231623 | ||
Tianchi | Sina Weibo Interaction-prediction-Challenge the Baseline | https://tianchi.aliyun.com/getStart/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231574 | ||
IJCAI-18 | IJCAI-18 Alimama Sponsored Search Conversion Rate(CVR) Prediction Contest | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231647 | ||
Tian Chi | FashionAI Global Challenge—Key Points Detection of Apparel | https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231648 | ||
Tianchi | Clothes Matching Challenge on Taobao.com-Challenge the Baseline | https://tianchi.aliyun.com/getStart/introduction.htm?spm=5176.100066.0.0.56ecd780V1l8Q4&raceId=231575 | ||
DCASE | Acoustic scene classification | http://dcase.community/challenge2018/task-acoustic-scene-classification | ||
DCASE | General Purpose audio tagging of Freesound content with AudioSet labels | http://dcase.community/challenge2018/task-general-purpose-audio-tagging and https://www.kaggle.com/c/freesound-audio-tagging | ||
DCASE | Bird audio detection | http://dcase.community/challenge2018/task-bird-audio-detection | ||
DCASE | Large-scale weakly labeled semi-supervised sound event detection in domestic environments | http://dcase.community/challenge2018/task-large-scale-weakly-labeled-semi-supervised-sound-event-detection | ||
DCASE | Monitoring of domestic activities on multi-channel acoustics | http://dcase.community/challenge2018/task-monitoring-domestic-activities | ||
Agorize | Smart City Innovation Award | https://www.agorize.com/en/challenges/le-monde-smart-cities-2018-world | ||
Open AI | Open AI Retro Contest | https://contest.openai.com/ | ||
IEEE Rebooting Computing | Low-Power Image Recognition Challenge (LPIRC 2018) | https://rebootingcomputing.ieee.org/lpirc | ||
VIST-NAACL-2018 | Visual Storytelling Challenge (NAACL 2018) | https://evalai.cloudcv.org/web/challenges/challenge-page/76/overview | ||
Automatic Visual Advertisements VQA – CVPR2018 | Automatic Understanding of Visual Advertisements | https://evalai.cloudcv.org/web/challenges/challenge-page/86/overview | ||
z | VQA Challenge 2018 | https://evalai.cloudcv.org/web/challenges/challenge-page/80/overview | ||
z | Leaf Segmentation Challenge | https://competitions.codalab.org/competitions/18405 | ||
z | DeepGlobe Land Cover Classification Challenge | https://competitions.codalab.org/competitions/18468 | ||
z | Chalearn LAP Inpainting Competition Track 2 – Video decaptioning | https://competitions.codalab.org/competitions/18421 | ||
z | Chalearn LAP Inpainting Competition Track 3 – Fingerprint Denoising and Inpainting | https://competitions.codalab.org/competitions/18426 | ||
z | Chalearn LAP Inpainting Competition Track 1 – Inpainting of still images | https://competitions.codalab.org/competitions/18423 | ||
Kaggle / Google | Open Images Challenge 2018 | https://storage.googleapis.com/openimages/web/challenge.html | ||
Principal Financial Group | IEEE Investment Ranking Challenge | https://www.crowdai.org/challenges/ieee-investment-ranking-challenge | ||
z | x | t | y | |
Stanford ML Group |
Bone X-Ray Deep Learning Competition
|
https://stanfordmlgroup.github.io/competitions/mura/ | t | y |
Berkeley |
WAD 2018 Challenges
|
http://bdd-data.berkeley.edu/wad-2018.html | t | y |
Hackerearth |
Deep Learning Beginner Challenge
|
https://www.hackerearth.com/challenge/competitive/deep-learning-beginner-challenge/ | y | |
x
|
x | t | y | |
x |
x
|
z | t | y |
x |
x
|
z | t | y |
Alibaba |
Alibaba Global Scheduling Algorithm Competition
|
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.5f1cd780HajDHE&raceId=231663 | t | y |
IEEE ICDM 2018 |
IEEE ICDM 2018 Global A.I. Challenge on MeteorologyCatch Rain If You Can
|
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.47cbd780fgnIJX&raceId=231662 | t | y |
Instalasi Eval AI di Ubuntu 17.10
Artikel ini adalah adaptasi dari prosedur instalasi di https://github.com/Cloud-CV/EvalAI
apt-get install openssh-server
apt-get install net-tools
Instalasi software dependencies:
apt-get install python2.7
apt-get install git
apt-get install postgresql# Success. You can now start the database server using:
# /usr/lib/postgresql/9.6/bin/pg_ctl -D /var/lib/postgresql/9.6/main -l logfile startapt-get install rabbitmq-server
apt-get install virtualenv
apt-get install python-psycopg2 (thanks to https://stackoverflow.com/questions/28253681/you-need-to-install-postgresql-server-dev-x-y-for-building-a-server-side-extensi)
apt-get install libpq-dev
apt-get install python-dev
apt-get install build-essential
# clone the EvalAI code
git clone https://github.com/Cloud-CV/EvalAI.git evalai
# Create a python virtual environment and install python dependencies.
cd evalai
virtualenv venv
source venv/bin/activate # run this command everytime before working on project
pip install -r requirements/dev.txt
Proses sampai tahap ini berhasil, selanjutnya masih perlu diujicoba:
cp settings/dev.sample.py settings/dev.py
Use your postgres username and password for fields USER and PASSWORD in dev.py file.
Create an empty postgres database and run database migration.
sudo -i -u (username)
createdb evalai
python manage.py migrate –settings=settings.dev
Seed the database with some fake data to work with.
python manage.py seed –settings=settings.dev
This command also creates a superuser(admin), a host user and a participant user with following credentials.
SUPERUSER- username: admin password: password
HOST USER- username: host password: password
PARTICIPANT USER- username: participant password: password
That’s it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)
python manage.py runserver –settings=settings.dev
Open a new terminal window with node(6.9.2) and ruby(gem) installed on your machine and type
npm install
Install bower(1.8.0) globally by running:
npm install -g bower
Now install the bower dependencies by running:
bower install
If you running npm install behind a proxy server, use
npm config set proxy http://proxy:port
Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)
gulp dev:runserver
That’s it, Open web browser and hit the url http://127.0.0.1:8888.
(Optional) If you want to see the whole game into play, then start the RabbitMQ worker in a new terminal window using the following command that consumes the submissions done for every challenge:
python scripts/workers/submission_worker.py
Percobaan iNaturalist
Menghitung Bandwidth Fair Use Policy Indihome 2016
Pada tulisan ini akan dihitung berapa bandwidth yang dapat dipakai untuk paket 10 Mbps Indihome jika diaktifkan terus menerus pada kondisi ideal.
PT Telkom Indonesia menerapkan kebijakan Fair Use Policy (FUP) pada Indihome berikut ini mulai Februari 2016.

Asumsi:
- Paket 10 Mbps
- 1 bulan adalah 30 hari
- Koneksi aktif download setiap saat hanya dibatasi kecepatan Indihome
- B = byte, b = bit, 1 byte = 8 bit
Perhitungan:
Paket ini akan mengalami 3 macam kecepatan:
- 10 Mbps ketika pemakaian <300 GB
- 75% x 10 Mbps = 7.5 Mbps ketika pemakaian < 400 GB
- 40% x 10 Mbps = 4. Mbps ketika pemakaian > 400 GB
Durasi kecepatan 10 Mbps adalah:
300 GB / 10 Mbps = 300 GB / 10 Mbps x 8 b/B = 240000 detik
Durasi kecepatan 7.5 Mbps adalah:
100 GB / 7.5 MBps = 100 GB / 7.5 Mbps x 8 b/B = 106666 detik
Durasi kecepatan 4 Mbps adalah:
30 hari – 240000 detik – 106666 detik = 30x24x60x60 – 240000 – 106666 = 2245333 detik
Berikut ini ringkasannya:
Kecepatan | Durasi | Total byte | |
segmen 1 | 10 Mbps | 240000 detik | 300 GB |
segmen 2 | 7.5 Mbps | 106666 detik | 100 GB |
segmen 3 | 4 Mbps | 2245333 detik | 1122,7 GB |
Total | 2592000 detik | 1522.7 GB |
Jadi total download selama 30 hari adalah 1522.7 GB , dengan kecepatan rata-rata adalah 433127 byte /s atau sekitar 3.46 Mbps
Referensi
- Software untuk menghitungnya dapat dilihat di https://bitbucket.org/waskita/fair-usage-policy-2016
- Deskripsi FUP Indihome dapat dibaca di http://www.indihome.co.id/faq
Perbandingan Gaji Supir Dan Dokter
Pesawat Sebagai Rumpon
Rumpon di laut berfungsi untuk tempat bersarang hewan laut. Beberapa barang yang dipakai sebagai rumpon: kereta, kapal induk. Jarang-jarang ada pesawat terbang dijadikan sebagai rumpon.
Pesawat TU-154 LZ BTJ
BTJ adalah singkatan dari Balkan Todor Jivkov.
Todor Jivkov adalah perdana menteri Bulgaria dari 1954 sampai 1989
Lokasi : Black Sea waters near the city of Varna, some 450 km (280 miles) northeast of Sofia May 25, 2011.









Pesawat itu sekarang menjadi obyek penyelaman yang menarik, seperti diuraikan di http://vodasport.com/?page_id=58
Referensi:
- BLACK SEA DIVING WRECK DIVING IN BULGARIA: TU-154 LZ-BTJ AIRCRAFT
- Wikipedia: Todor Zhivkov
- Wikipedia: Tupolev TU 154
- Bulgaria to sink former dictator’s plane into Black Sea
- http://www.novinite.com/view_news.php?id=107449
- Communist dictator’s plane becomes Black Sea reef
Memotret Dengan Mikroskop
Memotret dengan mikroskop dapat dilakukan dengan menggunakan kamera DSLR dengan cara mengganti lensa standar dengan lensa mikroskop. Untuk melakukan hal tersebut diperlukan adaptor khusus dari DSLR ke mikroskop. Adaptor ini berfungsi mencocokkan antara dudukan di kamera DSLR dengan sambungan di mikroskop. Kamera yang saya pakai adalah dari Canon, sedangkan dudukan mikroskop adalah berukuran 23 mm. Dengan informasi ini, barang tersebut dapat dicari di toko-toko online seperti Aliexpress.
Berikut ini gambar-gambar produk yang saya dapatkan di toko online:
T2 Mount
T2 Mount untuk kamera Canon

Ukuran yang tertera tersebut dicocokkan dengan mikroskop yang saya punya (Mikroskop Siswa BMK 20) menggunakan jangka sorong. Hasilnya cocok, sehingga diputuskan untuk membelinya. Harga barang termasuk ongkos kirim sekitar Rp 200 ribu.
Berikut ini foto perbandingan antara T2 mount adaptor dan lensa okuler. T2 mount ini menggantikan lensa okuler kalau dipasang kamera.

Berikut ini foto-foto set up sistem kamera Canon D700 + T2 mount adaptor + mikroskop BMK 20:

Ongkos total: mikroskop < Rp 2 juta (tergantung merek dan toko), adaptor sekitar Rp 200 ribu, kamera DSLR sekitar Rp 6 juta. Pada kasus saya kamera DSLR sudah ada karena memang hobi memotret, jadi cukup keluar tambahan mikroskop + adaptor.
Pada mikroskop tersebut tidak ada sekrup untuk mengencangkan lensa okuler, sehingga kamera tersebut mudah berputar dengan adaptor sebagai porosnya. Hal ini tidak terlalu masalah asal hati-hati saja tidak menyenggol kamera ketika sedang memotret.
Untuk memotret benda kecil juga dapat dilakukan dengan cara lain, misalnya:
- Mikroskop khusus multimedia
- Mikroskop USB
- Foldscope (http://www.foldscope.com/) ; mikroskop dari origami, sangat menarik sayangnya belum dijual.
Saya belum pernah mencoba 3 cara tersebut, jadi tidak dapat berkomentar tentang cara-cara itu.
Berikut ini contoh foto Paramecium yang diambil dengan kamera & mikroskop tersebut:

Mikroslaid Preparat Biologi
Kode | Nama Barang | Nama Tertulis |
BIA 210 | Mikroslaid Cacing Lumbricus, Usus, p.l. | No ZAN-650.1 Lumbricus t.s. thru. Body showing typhosole |
BIA 215 | Mikroslaid Cacing Lumbricus, Kerongkongan, p.l. | ZAN-550.1 Lumbrcus t.s. of esophagus, just posterior to pharynx |
BIA 301 | Mikroslaid Daphnia, utuh | 1. Daphnia |
BIA 451 | Mikroslaid Epitel Bersisik Sederhana | HET-110.1 SQUAMOUS EPTHELIUM scrapings from human mouth |
BIA 452 | Mikroslaid Epitel Batang Sederhana | HET-150.1 SIMPLE COLUMNAR EPITHELIUM |
BIA 458 | Mikroslaid Sperma, Mammalia, utuh | 3. Sperm mamalia |
BIA 459 | Mikroslaid Trachea | 4. Trachea |
BIM 118 | Mikroslaid Trypanosoma, utuh | 2. Trypanosoma |
BIM 610 | Mikroslaid Penicillium sp., utuh | Pencillium |
BIM 620 | Mikroslaid Aspergillus sp., utuh | Aspergillus sp., utuh |
BIM 810 | Mikroslaid Paramecium sp., utuh | Paramecium sp. , utuh |
BIM 910 | Mikroslaid Spirogyra sp., utuh | Spyrogyra sp, w.m |
BIM 912 | Mikroslaid Diatom, utuh | Diatoms, strewn slide of mixed species |
BIP 102 | Mikroslaid Bryophyta, utuh | 9 Bryophita |
BIP 152 | Mikroslaid Stomata Jagung | Stomata Jagung |
BIP 157 | Mikroslaid Stomata Canna | Stomata Canna |
BMS 23/001 | Mikroslaid Darah Manusia | Human Blood |
BMS 23/002 | Mikroslaid Tulang Rawan | Hyaline Cartilage |
BMS 23/004 | Mikroslaid Batang Dikotil, p.l. | Dicot stem, ts |
BMS 23/005 | Mikroslaid Batang Monokotil, p.l. | Zea Mays Stem, ts |
BMS 23/006 | Mikroslaid Akar Dikotil, p.l. | Dicot root, ts |
BMS 23/007 | Mikroslaid Akar Monokotil, p.l. | Zea Mays Root, ts |
BMS 23/009 | Mikroslaid Pinus mercusii, Gymnospermae, Daun, p.l. | Pinus leaf x.s |
BMS 23/010 | Mikroslaid Helianthus, Batang Dikotil Tua, p.l. | Helianthus old stem t.s |
BMS 23/011 | Mikroslaid Zea mays, Akar Monokotil, p.b. | Zea root, l.s. |
BMS 23/012 | Mikroslaid Akar Monokotil, p.b. | Monocot Root, l.s. |
BMS 23/013 | Mikroslaid Sel Darah Putih Manusia | Leukocyte, Human |
BMS 23/014 | Mikroslaid Epidermis Bawang, Monokotil | Microslide of Onion Epidermic |
BMS 23/015 | Mikroslaid Batang Dikotil, Kacang Tanah, p.l. | Dicot Stem, Peanut, Arachnis sp., c.s. |
BMS 24/01 | Mikroslaid Kaki Belakang Lebah Madu | Honeybee posterior leg |
BMS 24/02 | Mikroslaid Antena Udang | Antena crayfish |
BMS 24/03 | Mikroslaid Sayap Capung | dragonfly wing |
BMS 24/05 | Mikroslaid Bulu Domba | sheep hair |
BMS 24/06 | Mikroslaid Bulu Kelinci | rabbit hair w.m. |
BMS 24/07 | Mikroslaid Bulu Burung | bird feathre |
BMS 24/08 | Mikroslaid Sayap Kupu-kupu | Butterfly wing |
BMS 24/09 | Mikroslaid Sayap Lebah Buah | Drosophila anterior and posterior wings w.m |
BMS 33.00/01 | Mikroslaid Kotak Spora, Pteridophyta | Microslide Sporangium Pteridophyta |
BMS 33.00/02 | Mikroslaid Jamur Mucor, utuh | Mucor, Fungi, w.m. |
BMS 33.00/04 | Mikroslaid Hydra, utuh | Microslide Hydra w.m. |
BMS 46 | Mikroslaid Euglena | Euglena |
BMS 48 | Mikroslaid Chlorella | Chlorella sp. W.m |
BMS 38.00/01 | Mikroslaid Pheretima, Cacing Tanah, p.l. | Pheretima earthworm, ts |
BMS 38.00/02 | Mikroslaid Pheretima, Cacing Tanah, p.b. | Pheretima earthworm, ls |
BMS 38.00/03 | Mikroslaid Cucurbita, Batang Dikotil, p.l. | 3. cucurbita, dicot stem ts |
BMS 38.00/04 | Mikroslaid Cucurbita, Akar Dikotil, p.l. | 4. Cucurbita, dicot root, ts |
BMS 38.00/05 | Mikroslaid Helianthus, Akar Muda, p.l. | 5. Helianthus, dicot young root, ts |
BMS 38.00/06 | Mikroslaid Helianthus, Akar Dikotil Tua, p.l. | 6. Helianthus, dicot old root, ts |
BMS 38.00/07 | Mikroslaid Allium, Ujung Akar Monokotil, p.b. | 7. Allium, monocot root tip, ls |
BMS 38.00/08 | Mikroslaid Zea mays, Akar Monokotil, p.l. | 8. zea mays, monocot root, ts |
BMS 38.00/09 | Mikroslaid Zea mays, Batang Monokotil, p.l. | 9 Zea mays, monocot stem, ts |
BMS 38.00/10 | Mikroslaid Zea mays, Daun Monokotil, p.l. | 10. Zea mays, monocot leaf, ts |
BMS 38.00/11 | Mikroslaid Ficus, Daun Dikotil, p.l. | 11. Ficus dicot leaf, ts |
BMS 38.00/12 | Mikroslaid Lilium, Daun Monokotil, p.l. | 12. Lilium monocot leaf ts |
BMS 32.00/01 | Mikroslaid Lilium, Kepala Sari (Profase Awal, p.l.) | 1. Lilium, Anther (early prophase ts) |
BMS 32.00/02 | Mikroslaid Lilium, Kepala Sari (Profase Akhir, p.l.) | Lilium, anther (late prophase ts) |
BMS 32.00/03 | Mikroslaid Lilium, Kepala Sari (Metafase, p.l.) | Lilium, anther (metahphase ts) |
BMS 32.00/04 | Mikroslaid Lilium, Kepala Sari (Profase Akhir, p.l.) | Lilium, anther (late prophase ts, showing pollen) |
Magnetic Door Stopper Imperial
Door stopper bermagnet berguna untuk menjaga sebuah pintu berada dalam keadaan terbuka sehingga tidak menutup lagi karena angin. Beberapa waktu lalu door stopper untuk pintu luar rumah rusak karena terbuat dari plastik yang ternyata rusak setelah terpapar cahaya matahari bertahun-tahun. Solusinya adalah membeli door stopper baru yang terbuat dari logam. Pencarian di toko Borma Setiabudi tidak membawa hasil, ke ACE Hardware harganya mahal sekali, sedangkan mau ke toko besi rada malas, sehingga solusinya adalah mencari benda itu di toko online.
Akhirnya ketemu juga benda yang diinginkan dengan harga yang masih lumayan murah. Berikut ini foto-foto door stopper yang diperoleh, yaitu merek Imperial.
Kemasan

Isi Paket

Membongkar Komponen
Untuk membongkar bagian yang kecil mesti menggunakan tang lancip untuk memutar bagian belakangnya.

Berikut ini komponen-komponen dari bagian yang kecil. Ada sebuah magnet yang kecil sekali namun cukup kuat.

Berikut ini membongkar bagian yang besarnya, relatif lebih mudah karena hanya cukup dengan membuka 1 sekrup saja.

Manual
Manual yang disertakan pada kemasan cukup singkat, bisa dibilang basa-basi. Bahasa yang digunakan Inggris, dengan beberapa kesalahan.

